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Method 

Results 

Summary and Future Works 

Single cell exome sequencing of cancer cells can give us information 

regarding their progression. Specifically, we can  infer the order in which 

specific genes get mutated for normal cells to transform into cancer cells. We 

present a Bayesian technique to infer the mutation orders and a validation 

procedure for our algorithm. 

Introduction 
Step 1 - Inferring Pairwise Relations Between Mutation Sites 
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Step 2 - Constructing overall mutation relationships 

Figure 1. Genealogy tree. This tree represents one possible 

genealogy that generates the given genotype data. Here, two 

mutations at gene X and gene Y occurred at marked points on 

the tree. The five samples with integer genotypes x and y are 

attached to the leaves of the tree. The root is assumed to be 

wild-type and have the genotype of (x = 0, y = 0). The top of 

the tree represents the cell line before mutagenesis and 

bottom represents the current state. 
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Figure 3. Tree comparison. When generating trees we compared 

the predicted relationships to the true relationship to measure their 

similarities. The similarity ranges from 0 to 1 where 0 represents 

no similarities and 1 represents an exact match. We measure 

similarity by looking at two nodes and seeing if those two nodes 

have the same relationship in the other tree (e.g. nodes are in the 

same lineage and are in the same temporal order). The two trees 

above have a similarity of 2/3 because the Z and Y relationships 

differ. Using this technique, we tested our algorithm with many 

testing parameters. 

Step 3 - Tree Validation and Simulation 

We were able to successfully infer a mutation tree similar to that of Kim and Simon, and also devised a framework to test 

our algorithm in numerous scenarios. In addition, we discovered that our algorithm is effective when the number of 

sampled cells are much greater than the number of mutation sites examined; based on our analysis, we question the 

validity of the mutation tree generated by Kim and Simon, as they had relatively small number of cells but tracked many 

mutations.  
 

In the future, we may want to try a machine learning approach to predicting tree structure. Another future challenge would 

be inferring the alpha value from the given data, which was not in the scope of this project. 
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Figure 4. Mutation tree for 

essential thrombocythemia 

(ET) tumor. The tree was 

generated using Hou et al.’s 

data from a patient. From the 

data, we chose to examine the 

eighteen mutations that Hou 

selected as important in order 

to build a similar mutation tree 

as Kim and Simon.  

Comparing our ET mutation tree to theirs, the two trees have a similarity score 

of 0.65.  Although the similarity score may seem low, our tree has the same 

parent node as well as all the correct leaf nodes. The colored nodes and arrow 

show the substructure in our trees that are also found in Kim and Simon’s tree. 
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Figure 5 Simulation Results. (Left) We 

see that with these parameters, the 

algorithm does not perform significantly 

different than the baseline. (Bottom, Left) 

With large cell counts and small number of 

mutations tracked, we can always stay 

above the base-line. (Bottom, right) Similar 

to Kim and Simon's experiment, simulation 

results with 50 cells and 19 mutations 

show that algorithm does not perform 

better than the base-line. 
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Figure 2. Mutation relationship. The tree on the left 

shows all the relationships between each mutation X, 

Y, and Z. And the tree on the right is the minimum 

spanning tree. The arrows represents the temporal 

relationship between the mutations. The weights of 

the edges are equal to −log⁡[Pr⁡(𝑖 → 𝑗)] so the higher 

the probability of that relation, the smaller the weight.  


