

Determining Host Connectivity in for Event Prioritization

Min Cheol Kim

Thomas Jefferson High School for Science and Technology

July 25, 2012

Naval Research Lab

Code: 5540

Mentor: Dr. Anya Kim

Abstract

The Navy computer network is monitored and protected by a handful of cyber warriors that deal

with an overwhelming amount of potential attacks (in the form of events) to the network in a

mostly sequential basis. To more effectively monitor and counter these events, some form of

event prioritization method is crucial. Connectivity is a notion of how influential one host is to

another – particularly when the former is under attack - and is an essential part of the proposed

calculation mechanism for event prioritization. The concept and implementation of connectivity

within event prioritization allows priority determination to go beyond looking at the target host,

enabling estimations of the effects of an attack to other connected mission-critical hosts and the

combined effects of multiple events on connected hosts. To determine connectivity, the concept

of network distance – how far two hosts are from each other in terms of ease of access in a

network – was developed. A simple, but rational way of calculating connectivity by using

Dikjstra’s algorithm [1] and network distance using hops between connected was proposed.

Introduction

The military, or any organization for that matter, has many computer assets that provide critical

mission support. Some of these assets – such as a weapons system - may provide direct support

to the mission, while others such as routers may provide indirect yet important capabilities. To

ensure mission success and the safety of the soldiers these assets must be continuously protected

against and monitored for attacks and other threats.

The current operation process for monitoring Navy computer networks involves a handful of

cyber warriors protecting 750,000 computers by analyzing 100,000 attack-based events on a

daily basis [2]. These events are triggered by potential attacks to the system. Events are generally

handled on a first-come first-serve basis and are based on event severity alone. Cyber warriors

are overburdened dealing with events, and at the same time do not have actionable information to

enable them to make accurate decisions regarding these events. Therefore, there is a need for

autonomous event prioritization that relieves the burden of the cyber warrior, and utilizes more

information to accurately determine event priority.

This paper describes the overall event prioritization research, and in particular focuses on the

notion of connectivity, how it applies to event prioritization, and provides implementation details

for determining connectivity.

Background

Event Prioritization

Event prioritization (EP) is a process that allows the cyber warriors to deal with threatening

events in the order of importance. Order of importance is determined by examining how an event

can affect the health of the system as a whole, and also its effects to critical assets on the network.

It requires looking at factors beyond the event to accurately determine its priority. For example,

the potential vulnerability of the target host, the mission criticality of a host, the damage that an

event can inflict on a host, a target host’s connectivity to other critical hosts and other

surrounding events are pieces of the puzzle needed to predict the importance of an event. The

event prioritization framework developed for this project reflects this complexity. The final EP

score is dependent on numerous components, all of which are related in a complex manner

(Figure 1). For example the Comprehensive Potential Host Importance value – a measure of the

importance of a host due to its inherent importance as well as the importance of hosts its

connected to - is calculated using Isolated Host Exposure and the host exposure of connected

hosts. This requires connectivity information to be available. When examining the EP framework,

it is obvious that connectivity information is required in many stages of the process.

Connectivity

Connectivity is the component of the EP framework that connects many of these isolated values.

It provides information on how easily one host or event can spread through the network and can

affect other hosts. For example, two identical events may target two different hosts with similar

characteristics. It may seem that the consequences arising from events are similar. However,

when connectivity information is available, we may be able to determine that one host is strongly

connected to many other hosts that support critical missions while the other does not. As another

example, assume a virus-like event that targets specific platforms and applications is detected on

a host. The connectivity information lets us see how fast this event can spread, given the number

and strength of connections to other hosts. The connectivity information also assists in

determining which hosts with similar platforms and applications are connected to the target host.

This enables the cyber warrior to determine how fast and to what degree this event can spread. In

essence, it is an extremely component in determining true event priority.

Figure 1. Event prioritization overview

Calculating Connectivity

Connectivity, as explained above, is an essential part of many components used in the calculation

of event priority values. It is based on a concept we call network distance. Network distance is an

abstract concept of how close two hosts are to each other; the connectivity value reflects the

potential influence that a host can make to other hosts in case of an attack or when a host is

compromised. Network distance and connectivity, by definition, are inversely related. The

maximum value of connectivity is defined as one, and the minimum as zero. One means fully

connected (hundred percent influence) and zero means there is no connection whatsoever.

Following these definitions, then, network distance of infinity would indicate a connectivity

score of 0, and network distance of 0 would indicate connectivity score of 1. Hosts within a

subnetwork are defined to have network distance of 0. After the calculation, the connectivity

scores can be displayed in an n x n matrix where n is the number of hosts involved in the cyber

domain under consideration. The matrix representation is convenient when considering firewalls,

when connectivity from one host to another differs from that from the latter to the former.

Determining connectivity can be broken down into several crucial steps:

1. Mapping out a network topological map.

2. Adjusting each edge length to reflect network distance between two machines.

3. Summing up all the edges that exist between any given two hosts to find the total network

distance between the hosts.

4. Calculating the connectivity score based on the total network distance, and displaying it in a

connectivity matrix

Step 1: Mapping out a network topological map

Before any relevant information is used, the information on the how the machines in a given

network are connected is critical. Before we can begin to calculate the connectivity, we first need

to know what machines are connected to each other; this can be represented as a graph with

nodes and edges, where notes can be various components of the network, such as hosts, routers,

switches, firewalls, etc. Edges represent the physical connections such as cables or wireless

connections. A sample representation of network topology is shown in Figure 2.

Figure 2. Sample network topology

Step 2: Adjusting edge length

Each edge between the nodes (or devices that are part of the network) represents the degree of

connection between the two nodes. This edge length can take into account numerous types of

information: firewall rules, throughput, subnet topology, etc. In this project, for simplicity’s sake,

the default distance (i.e, edge length) was considered one “hop” from one device to another, and

in presence of a firewall, the edge length was increased to a certain degree starting from 1.

Firewall rules can be quite complex, so in this paper, we only took into account the rules

involving the percentage of the network ports open according to the firewall. Network ports are

numbers that are associated with each IP address that a packet traveling through a network can

be received at or sent from. In presence of a firewall, when no ports are open (i.e, no traffic

allowed between different firewall interfaces) that would indicate that there is an infinite network

distance between two machines on different sides of the firewall; when all are open, it would be

the same as not having a firewall at all. Since the default distance between two machines is 1, the

percent of ports open versus the network distance plot must include the points (0,∞) and (100,1).

The predicted graph would show an inverse exponential relationship, since as the percentage of

ports open increases, having a small quantity of more open ports matters less and less. Figure 3

shows a predicted graph of percentage of ports open versus the network distance.

Figure 3: Network distance as a function of % of ports open in a given firewall

Based on our prediction of the network distance as a function of percentage of ports open and

input from domain experts, we define a simple network distance algorithm as:

The data involving the inbound/outbound ports, such as percentage of open ports, can be

gathered by looking at the firewall rule settings. The locations of the firewall in a network and

other general network configuration information can be gathered through network scanners such

as Nmap [3].

It is also important to note that the network distance between two machines, in the presence of a

firewall, can be different depending on which direction the traffic is heading towards. We take

this into consideration by, in presence of a firewall, having multiple edges (depends on the

direction and the host-specific ruleset of the firewall) between two devices. This way, distance

from one node to another can be treated as direction and host specific.

Other information regarding the firewall or other aspects of the network can be used to more

accurately calculate the network distance. For example, proxy rules that allow connections from

small groups of hosts to another small group of hosts across the firewall would provide more

detailed connectivity information. Incorporating router access control lists (ACLs) and VLAN

tagging techniques [4] would further enhance the connectivity data.

Step 3: Summing up all the edges

Once the nodes and the edges that reflect that network distance are set up, we can find the total

network distance between two hosts by finding the shortest “path” from one host to another. In

this study, we used Dijkstra’s algorithm for finding the shortest path. The algorithm looks at the

distance between the current node and its entire neighboring node to find the next shortest path,

while marking every node that it visits as “visited” and takes it off the “unvisited” set. This way,

the shortest distance between two hosts can be represented as the total network distance. Figure 4

shows a sample code that executes Dijkstra’s algorithm.

while(!queue.isEmpty()

 {

 wVertex v2 = queue.remove();

 Map<wVertex, Integer> edges = v2.getEdges();

 for (wVertex key : edges.keySet())

 {

 if (v2.getMinDistance() + edges.get(key) < key.getMinDistance())

 {

 key.setMinDistance(v2.getMinDistance() + edges.get(key));

 queue.add(key); //add the node as current node

 }

 }

 }

Figure 4. Application of Dijkstra’s algorithm in finding the network distance between two hosts

Step 4: Calculating Connectivity Score

Once the distances between the hosts are calculated, there must be some way to convert that

distance into a usable form of number, or a score. Connectivity, by definition, reflects complete

connection when 1, and completely disconnection at 0. An exponential graph is predicted since

as the network distance increases, a certain amount of additional increase would have a smaller

effect on the connectivity. A predicted network distance vs. connectivity graph is shown in

Figure 5.

Figure 5. Network distance vs. connectivity score

The equation would be in the form of:

, where k is a constant to be determined by

empirical data. Upon consulting with domain experts, a value between 1.1 and 1.2 seemed to be

the most appropriate. Once the connectivity between each and every host has been calculated, it

can be displayed in a connectivity matrix. A connectivity matrix for the sample network shown

in Figure 1 is shown in Figure 6.

 Host1 Host2 Host3 Host4

 From Host1 1.000 0.621 0.751 0.621

 From Host2 0.513 1.000 0.564 1.000

 From Host3 0.751 0.683 1.000 0.683

 From Host4 0.513 1.000 0.564 1.000

Figure 6. Connectivity matrix for sample network

Conclusion

Event prioritization is a novel way to allow cyber warriors to approach multiple simultaneous

events in a system. Connectivity is a crucial step to many of the calculations involved in

producing the final EP score. This paper introduces a method to calculate the connectivity via

calculation of the network distance between two hosts, enabled by Dijkstra’s algorithm. The

usage of firewall rules (percentage of ports open) exerts its effect on the connectivity by

elongating the default network distance (1) appropriately. The total network distance between

two hosts in different subnets can be used to calculate the connectivity score that ranges from 0

to 1.

Acknowledgements

This project could not have been done without the help of Joe Langley. I would also like to thank

Anya Kim and Myong Kang for guiding me throughout the project.

References

1. Center for High Assurance Computer Systems Information Technology Division. (2011,

September). Determining asset criticality for cyber defense (Issue Brief) (A. Kim & M. H.

Kang, Authors).

2. Choksi, R., & Yu, C. (2007, April). Study on VLAN in wireless networks (Technical Report).

3. Fyodor (Presenter). (2006, January). Advanced network reconnaissance with Nmap [Lecture].

4. Puthuparampil, M. (n.d.). Dijkstra’s algorithm (Report).

