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Abstract—In this project, we describe the steps to reconstruct 

a frame order from a series of images with the ultimate goal 

being the reconstruction of protein trajectories. We apply 

nonlinear dimensionality reduction to generate a graph of frames 

with edges representing distances. From the graph we 

reconstruct our frame order through various means such as 

finding the long path in the minimum spanning tree. We show 

promise of this approach through reconstructing the frame order 

of simple biological simulations. 
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I. INTRODUCTION 

When we think of videos, we almost always take the frame 
order for granted. After all, someone must have generated that 
video in some way. However, if one was given a bag of 
randomly ordered frames, how would one go about ordering 
them to be coherent? 

This problem is inspired by the data generated by the Linac 
Coherent Light Source (LCLS) facility at the Stanford Linear 
Accelerator Center. This facility can take an “image” of a 
biological molecule, acquiring data such as the (x, y, z) 
coordinates of all the atoms and the angles between the 
important bonds present in the backbone. However, because 
the procedure destroys every molecule after each “snapshot,” 
we end up with many images of the biological molecule in 
different states and conformations that are part of their 
dynamics trajectory. Here, the dynamics trajectory is analogous 
to the frame order of a video; at the LCLS facility, we get 
frames of the video without the information about their relative 
orders. 

The motivation is to order these images so that we can learn 
something about the dynamics about the protein. For this 
project, we approached this problem step by step, first by 
applying our algorithm on very simple simulated datasets and 
then moving onto the reconstruction of shuffled biological 
molecule simulations. 

II. MOITIVATION AND CONCEPTUAL FRAMEWORK 

Before we go further in depth, this section will outline our 
conceptual framework that guided the project. Our method 
involved a type of dimensionality reduction and finding a 
trajectory within that reduced dimensional space. Consider a 
cube rotating through space, as represented in Figure 1. The 
cube starts out in the left middle position and rotates through 
the space to arrive at the right middle position. Let us say that 

these images are 100x100 pixels large. Then, we are talking 
about 10000-dimensional vectors for each frame.  

However, now consider what is actually changing through 
series of the images. The only thing that is changing is θ, the 
angle that describes the progress of the rotation. If these images 
were all shuffled and we did not know the order, but if we 
performed the correct type of dimensionality reduction from 
the 10000-dimensional vector space to a single number, we 
could simply sort by the number we get (which would be 
representative of θ) and we would have our reconstruction of 
the ordering.  

The project is based on the hypothesis that a similar 
approach may be successful in reconstructing a series of 
biological data: dimensionality reduction followed by a simple 
algorithm for the trajectory reconstruction. 

 

 

Fig. 1. Rotating Cube 

III. METHODS 

After the text edit has been completed, the paper is ready 
for the template. Duplicate the template file by using the Save 
As command, and use the naming convention prescribed by 
your conference for the name of your paper. In this newly 
created file, highlight all of the contents and import your 
prepared text file. You are now ready to style your paper; use 



the scroll down window on the left of the MS Word Formatting 
toolbar. 

A. Dimensionality Reduction 

The method we utilized for nonlinear dimensionality 
reduction was Isomap [1]. We first vectorize all images into a 
2-D matrix and apply Isomap which consists of the following 
procedure: 

1) Determine the neighbors of each point 

2) Construct neighborhood graph 

3) Compute shortest path between nodes 

4) Compute lower-dimensional embedding 
For the Isomap parameters, n-neighbors and n-components, 

we discuss the optimization of the them below. 

B. Trajectory reconstruction in the reduced dimension 

Using the values generated by Isomap we create a fully 

connected graph between all the images where the edge 

weight between each image is the euclidean distance of their 

isomap values. In order to prune the graph we find the 

minimum spanning tree to minimize the distance between 

closely positioned frames.  

From the minimum spanning tree there are many 

approaches to reconstruct the frame order. We used two 

different methods for reconstruction: 

1) Greedy reconstruction 

Find the two closest frames and connect them. Then 

continue to search for the closest frames to the ones connected 

and attach to the end. Iterate until all frames are used and the 

fine linear sequence is the reconstruction. 

2) Longest path in minimum spanning tree 

While many frames are lost be pruning the branches, the 

reconstruction tends to perform well. (Figure 2) 

 

 
Fig. 2. Longest path in the minimum spanning tree 

C. Trajectory reconstruction in the reduced dimension 

We considered two metrics for evaluating our 

reconstructed trajectory, the RMSD error between frames and 

the frame alignment score. 

1) RMSD error between frames 

This metric was calculated by calculating the difference 

matrix, defined as the matrix whose rows represent the 

difference between each adjacent pairs of rows in the original 

matrix. If our original matrix represented 5 frames (rows) each 

with 3 components (columns), the difference matrix would 

contain 4 rows with 3 components where each row is the 

difference between adjacent rows in the original matrix. We 

then compute element-wise sum of squares of this matrix, 

divide by its dimensions (in this case 4 x 3), and square root 

the result. In other words, this number is the Frobenius norm 

of the difference matrix squared, divided by the number of 

elements in the matrix, and then square rooted. With this 

measure, larger numbers indicate worse reconstruction. 

2) Frame alignment score 

The alignment score is based on a similar problem in 

bioinformatics, DNA alignment. Both the Needleman-Wunsch 

and Smith-Waterman algorithm was implemented to given an 

alignment score between two frame orders where one order is 

the true order and the other one is the calculate one.[2][3] In 

addition, there are many parameters that can be fine-tuned 

when calculating the alignment score such as the score matrix, 

gap penalty, and extending gap penalty. In order to keep our 

model simple made our scoring matrix equivalent to an 

identity matrix. Every correct frame match is plus one while 

every mismatch is plus zero. We also made the gap penalty 

and extending gap penalty 0.1 for simplicity. Although both 

alignment algorithms were implemented, we focused on using 

Needleman-Wunsch for the alignment score since our matrix 

did not contain any negative numbers which is one 

requirement for using Smither-Waterman. With this measure, 

larger numbers indicate better reconstruction. 

IV. RESULTS: PROOF OF CONCEPT: SQUARE AND CUBE 

As a proof of concept for the frame order reconstruction, 
we made a two simple simulations for testing. The first 
simulation consists of a square orbiting around a central point. 
The simulation was made by first creating an image with a 
square drawn on which was 500 by 500 pixels. The frames of 
the video were made by continually rotating the image around 
the central point. 

Using the rotating square simulation, we validated the use 
of nonlinear dimensionality reduction by examining just the 
first principal value from the Isomap. By simply sorting with 
this value, we are able to reorder the whole sequence of images 
into its original frame order. 

The second simulation we developed a 3D cube simulation 
to test our reconstruction. While the square simulation also lets 
us test reconstruction, due to the simplicity of the model and 
lack of similarity with protein data, it was not the best choice in 
order to validate our reconstruction methods. 

Each frame of the simulation consists of a list of x, y, and z, 
coordinates where all the points make up a 3D grid of a cube. 
Coordinates were used since protein simulation data contains a 
list of coordinates for each atom. Using the cube simulation, 
after creating a totally connected graph we attempted various 
methods of reconstruction. 

 The first method we tried was greedy reconstruction, which 
failed to work in most situation. Unless we sampled the 
simulation with very small time steps, the algorithm failed to 
give reasonable reconstruction. As a result we decided to first 
obtain a minimum spanning tree since we want all the adjacent 
frames to be connected. Since most of the branches of the 
minimum spanning tree already contained correct sequences of 
frames, we decided to take the longest path in the minimum 
spanning tree as our reconstructed frame order. 



V. RESULTS:  SMALL PEPTIDE SIMULATION DATA 

To verify that our method is feasible with biological data 
before we get to true data from SLAC, we acquired a very 
simple simulation of an AK peptide starting in a linear, 
unfolded state to a helical structure. The AK peptide is a short 
sequence of amino acids that is relatively easy to study 
compared to other large biomolecules that may be studied at 
SLAC. 

This simulation was acquired by molecular dynamics 
techniques, which we will not go into detail here. This 
simulation gives us the similar type of data that we would get 
from the LCLS facility at SLAC, namely the X, Y, Z 
coordinates of every single atom in each frame. The entire 
simulation is quite long, and for the purposes of this project, 
we focused on the first one thousand frames of the simulation. 

 In other words, the simulation we will be concerned with 
contains a thousand frames, each frame with information on 
the position of each atom and the important angles that define 
the protein backbone. 

A. Using raw X, Y, Z coordinates from the simulation 

Our very first attempt at this simply used the raw X, Y, Z 

coordinates from the shuffled AK peptide simulation. AK 

peptide contains 229 atoms, so our design matrix was of the 

shape n x p where n = 1000 and p = 229 * 3 = 687. We then 

used Isomap for dimensionality reduction and the longest path 

in minimum spanning tree for the frame order reconstruction. 

Our reconstructed trajectory was evaluated using both frame 

order score metric and the RMSD error metric.  

 

We adjusted the hyperparameters and had seemingly the 

best results when n_components and n_neighbors for the 

Isomap algorithm was 30 and 40, respectively. We got 0.13 

for RMSD error between frames and 11.1 for the frame 

alignment score. 

B. Using phi, psi angles from simulation 

After we had our initial results using the raw X, Y, and Z 
coordinates, we had a meeting with Dr. Lane. He pointed out 
an important red flag that our Isomap approach may be 
learning the slow “tumble” (a slow, steady, rotation that the 
entire molecule undergoes during the simulation) rather than 
the actual dynamics of the protein. This would not be very 
helpful, since the SLAC data does not have any information on 
the orientation of the protein. To remove this “tumbling” 
information from our dataset, we first attempted the same 
approach as above (Isomap, then reconstruction via longest 
path in minimum spanning tree) but by using phi/psi angles. 
These angles give information about the conformation of the 
protein backbone. Further reading can be found in [4].  

 We got worse results than we did from using the raw X, Y, 
Z coordinates, with the RMSD error of 0.297 and frame 
alignment score of 4.9 when we used n_components = 30 and 
n_neighbors = 40 for hyperparameters. The reconstructed 
video also was visually not as satisfactory as using the raw X, 
Y, and Z coordinates of the atoms. 

C. Using X, Y, Z coordinates after aligning every frame to a 

reference frame 

Another approach to removing the “tumbling” information 
from our dataset and making it more realistic was to align 
every frame to a single reference frame, so that every protein 
lies in the same orientation in every frame. This was done 
using the MDTraj package (same package for reading and 
writing these simulation data); after the frames were shuffled, 
all the frames were aligned to the very first frame in the 
shuffled dataset.  

 We then performed the identical procedure as the two 
sections above, and got results much better than using phi/psi 
angles. We got 0.142 for the RMSD error between frames and 
7.8 for the frame alignment score. The resulting video was also 
visually satisfactory. We see that in Table 1 that both metrics 
indicate that using raw X, Y, Z coordinates performed the best, 
then aligned X, Y, Z, and then the phi/psi angles. This is very 
consistent with our visual results (Figure 3). 

 

 

Fig. 3. Snapshots of trajectory reconstruction with aligned X, Y, Z 

coordinates 

 

 

 

 

 

 



TABLE I.  SUMMARY OF SCORES FOR THE THREE AK PEPTIDE 

APPROACHES 

 RMSD error 

between frames 

Frame alignment 

score  

Perfect 

reconstruction 

0.102 1000 

Raw X, Y, Z 0.13 11.1 

Phi/Psi angles 0.297 4.9 

Aligned X, Y, Z 0.142 7.8 

D. Hyperparameter Screening with 100 and 500 frames 

After we acquired our results for the three approaches, we 
attempted to sweep a large number of ranges for the 
hyperparameters for the Isomap algorithm: n_components and 
n_neighbors. We were only able to sweep values for frame 
counts of 100 and 500 due to computational constraints. The 
performance at each value of n_components and n_neighbors 
was measured both with the RMSD error between frames and 
the frame alignment score. Some of the results are shown 
below. In general it was difficult to draw conclusions exactly 
what set of hyperparameters yielded the best results, but it 
seemed that for 500 frames, the best result with RMSD error 
between frames came from using n_components = 28 and 
n_neighbors = 23. With n_neighbors fixed at 23, we generated 
the following graph (Figure 2). With n_components fixed at 28, 
we generated another graph (Figure 3). 

 When using frame alignment score, for 500 frames, the best 
result came from using n_components = 11 and n_neighbors = 
22. Similar graphs as with the RMSD error score follows. 

 

 

Fig 4. n_neighbors fixed, varying n_components, RMSD error metric 

 

Fig 5. n_components fixed, varying n_neighbors, RMSD error metric 

 

Fig 6. n_neighbors fixed, varying n_components, frame alignment metric 

 

Fig 7. n_components fixed, varying n_neighbors, frame alignment metric 

VI. CONCLUSION AND FUTURE WORKS 

Nonlinear dimensionality reduction via Isomap then 
reconstruction via a graph algorithm seems like a promising 
approach to reconstructing the protein dynamics trajectory. 
Specifically, using X, Y, Z coordinates from aligned frames 
seem to perform much better than using phi/psi angle 
information - this could be due to the fact that phi/psi angles 
only give information on the conformation of the protein 
backbone, whereas X, Y, Z coordinates give information about 
the every single atom present in the frame.  



More improvements can be made both on the 
dimensionality reduction and on the trajectory reconstruction, 
by considering different algorithms (e.g., rearranging the 
minimum spanning tree, t-NSE instead of Isomap). In addition, 
improvement can be made on the evaluation metric to more 
accurately measure the quality of reconstruction for optimal 
hyperparameter optimization.  

Another feature that may be useful aside from X, Y, Z is 
the total energy of the frame. Biological molecules have a 
thermodynamic tendency to move to lower energy states, so 
this may be relevant information in reconstructing the protein 
trajectory. 

NOTES 

The code that reconstructs the molecular dynamics 
simulation data produces a .dcd trajectory file. The file can be 
opened in VMD along with the corresponding PDB file to view. 
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APPENDIX 

Both Christian Choe and Min Cheol Kim worked on 

experimenting with and designing the algorithm we used to 

reconstruct the frame order. Christian then focused on 

building the cube simulations to ensure that our algorithm is 

robust, and Min Cheol focused more on applying the 

algorithm on the biological dataset. 

 


