
Protein Dynamics Reconstruction from Unordered Images

Christian Choe

Department of Chemical Engineering &

Electrical Engineering

cachoe@stanford.edu

Min Cheol Kim

Department of Electrical Engineering

mincheol@stanford.edu

Abstract—In this project, we describe the steps to reconstruct

a frame order from a series of images with the ultimate goal

being the reconstruction of protein trajectories. We apply

nonlinear dimensionality reduction to generate a graph of frames

with edges representing distances. From the graph we

reconstruct our frame order through various means such as

finding the long path in the minimum spanning tree. We show

promise of this approach through reconstructing the frame order

of simple biological simulations.

Keywords—protein dynamics; reconstruction; nonlinear

dimensionality reduction

I. INTRODUCTION

When we think of videos, we almost always take the frame
order for granted. After all, someone must have generated that
video in some way. However, if one was given a bag of
randomly ordered frames, how would one go about ordering
them to be coherent?

This problem is inspired by the data generated by the Linac
Coherent Light Source (LCLS) facility at the Stanford Linear
Accelerator Center. This facility can take an “image” of a
biological molecule, acquiring data such as the (x, y, z)
coordinates of all the atoms and the angles between the
important bonds present in the backbone. However, because
the procedure destroys every molecule after each “snapshot,”
we end up with many images of the biological molecule in
different states and conformations that are part of their
dynamics trajectory. Here, the dynamics trajectory is analogous
to the frame order of a video; at the LCLS facility, we get
frames of the video without the information about their relative
orders.

The motivation is to order these images so that we can learn
something about the dynamics about the protein. For this
project, we approached this problem step by step, first by
applying our algorithm on very simple simulated datasets and
then moving onto the reconstruction of shuffled biological
molecule simulations.

II. MOITIVATION AND CONCEPTUAL FRAMEWORK

Before we go further in depth, this section will outline our
conceptual framework that guided the project. Our method
involved a type of dimensionality reduction and finding a
trajectory within that reduced dimensional space. Consider a
cube rotating through space, as represented in Figure 1. The
cube starts out in the left middle position and rotates through
the space to arrive at the right middle position. Let us say that

these images are 100x100 pixels large. Then, we are talking
about 10000-dimensional vectors for each frame.

However, now consider what is actually changing through
series of the images. The only thing that is changing is θ, the
angle that describes the progress of the rotation. If these images
were all shuffled and we did not know the order, but if we
performed the correct type of dimensionality reduction from
the 10000-dimensional vector space to a single number, we
could simply sort by the number we get (which would be
representative of θ) and we would have our reconstruction of
the ordering.

The project is based on the hypothesis that a similar
approach may be successful in reconstructing a series of
biological data: dimensionality reduction followed by a simple
algorithm for the trajectory reconstruction.

Fig. 1. Rotating Cube

III. METHODS

After the text edit has been completed, the paper is ready
for the template. Duplicate the template file by using the Save
As command, and use the naming convention prescribed by
your conference for the name of your paper. In this newly
created file, highlight all of the contents and import your
prepared text file. You are now ready to style your paper; use

the scroll down window on the left of the MS Word Formatting
toolbar.

A. Dimensionality Reduction

The method we utilized for nonlinear dimensionality
reduction was Isomap [1]. We first vectorize all images into a
2-D matrix and apply Isomap which consists of the following
procedure:

1) Determine the neighbors of each point

2) Construct neighborhood graph

3) Compute shortest path between nodes

4) Compute lower-dimensional embedding
For the Isomap parameters, n-neighbors and n-components,

we discuss the optimization of the them below.

B. Trajectory reconstruction in the reduced dimension

Using the values generated by Isomap we create a fully

connected graph between all the images where the edge

weight between each image is the euclidean distance of their

isomap values. In order to prune the graph we find the

minimum spanning tree to minimize the distance between

closely positioned frames.

From the minimum spanning tree there are many

approaches to reconstruct the frame order. We used two

different methods for reconstruction:

1) Greedy reconstruction

Find the two closest frames and connect them. Then

continue to search for the closest frames to the ones connected

and attach to the end. Iterate until all frames are used and the

fine linear sequence is the reconstruction.

2) Longest path in minimum spanning tree

While many frames are lost be pruning the branches, the

reconstruction tends to perform well. (Figure 2)

Fig. 2. Longest path in the minimum spanning tree

C. Trajectory reconstruction in the reduced dimension

We considered two metrics for evaluating our

reconstructed trajectory, the RMSD error between frames and

the frame alignment score.

1) RMSD error between frames

This metric was calculated by calculating the difference

matrix, defined as the matrix whose rows represent the

difference between each adjacent pairs of rows in the original

matrix. If our original matrix represented 5 frames (rows) each

with 3 components (columns), the difference matrix would

contain 4 rows with 3 components where each row is the

difference between adjacent rows in the original matrix. We

then compute element-wise sum of squares of this matrix,

divide by its dimensions (in this case 4 x 3), and square root

the result. In other words, this number is the Frobenius norm

of the difference matrix squared, divided by the number of

elements in the matrix, and then square rooted. With this

measure, larger numbers indicate worse reconstruction.

2) Frame alignment score

The alignment score is based on a similar problem in

bioinformatics, DNA alignment. Both the Needleman-Wunsch

and Smith-Waterman algorithm was implemented to given an

alignment score between two frame orders where one order is

the true order and the other one is the calculate one.[2][3] In

addition, there are many parameters that can be fine-tuned

when calculating the alignment score such as the score matrix,

gap penalty, and extending gap penalty. In order to keep our

model simple made our scoring matrix equivalent to an

identity matrix. Every correct frame match is plus one while

every mismatch is plus zero. We also made the gap penalty

and extending gap penalty 0.1 for simplicity. Although both

alignment algorithms were implemented, we focused on using

Needleman-Wunsch for the alignment score since our matrix

did not contain any negative numbers which is one

requirement for using Smither-Waterman. With this measure,

larger numbers indicate better reconstruction.

IV. RESULTS: PROOF OF CONCEPT: SQUARE AND CUBE

As a proof of concept for the frame order reconstruction,
we made a two simple simulations for testing. The first
simulation consists of a square orbiting around a central point.
The simulation was made by first creating an image with a
square drawn on which was 500 by 500 pixels. The frames of
the video were made by continually rotating the image around
the central point.

Using the rotating square simulation, we validated the use
of nonlinear dimensionality reduction by examining just the
first principal value from the Isomap. By simply sorting with
this value, we are able to reorder the whole sequence of images
into its original frame order.

The second simulation we developed a 3D cube simulation
to test our reconstruction. While the square simulation also lets
us test reconstruction, due to the simplicity of the model and
lack of similarity with protein data, it was not the best choice in
order to validate our reconstruction methods.

Each frame of the simulation consists of a list of x, y, and z,
coordinates where all the points make up a 3D grid of a cube.
Coordinates were used since protein simulation data contains a
list of coordinates for each atom. Using the cube simulation,
after creating a totally connected graph we attempted various
methods of reconstruction.

 The first method we tried was greedy reconstruction, which
failed to work in most situation. Unless we sampled the
simulation with very small time steps, the algorithm failed to
give reasonable reconstruction. As a result we decided to first
obtain a minimum spanning tree since we want all the adjacent
frames to be connected. Since most of the branches of the
minimum spanning tree already contained correct sequences of
frames, we decided to take the longest path in the minimum
spanning tree as our reconstructed frame order.

V. RESULTS: SMALL PEPTIDE SIMULATION DATA

To verify that our method is feasible with biological data
before we get to true data from SLAC, we acquired a very
simple simulation of an AK peptide starting in a linear,
unfolded state to a helical structure. The AK peptide is a short
sequence of amino acids that is relatively easy to study
compared to other large biomolecules that may be studied at
SLAC.

This simulation was acquired by molecular dynamics
techniques, which we will not go into detail here. This
simulation gives us the similar type of data that we would get
from the LCLS facility at SLAC, namely the X, Y, Z
coordinates of every single atom in each frame. The entire
simulation is quite long, and for the purposes of this project,
we focused on the first one thousand frames of the simulation.

 In other words, the simulation we will be concerned with
contains a thousand frames, each frame with information on
the position of each atom and the important angles that define
the protein backbone.

A. Using raw X, Y, Z coordinates from the simulation

Our very first attempt at this simply used the raw X, Y, Z

coordinates from the shuffled AK peptide simulation. AK

peptide contains 229 atoms, so our design matrix was of the

shape n x p where n = 1000 and p = 229 * 3 = 687. We then

used Isomap for dimensionality reduction and the longest path

in minimum spanning tree for the frame order reconstruction.

Our reconstructed trajectory was evaluated using both frame

order score metric and the RMSD error metric.

We adjusted the hyperparameters and had seemingly the

best results when n_components and n_neighbors for the

Isomap algorithm was 30 and 40, respectively. We got 0.13

for RMSD error between frames and 11.1 for the frame

alignment score.

B. Using phi, psi angles from simulation

After we had our initial results using the raw X, Y, and Z
coordinates, we had a meeting with Dr. Lane. He pointed out
an important red flag that our Isomap approach may be
learning the slow “tumble” (a slow, steady, rotation that the
entire molecule undergoes during the simulation) rather than
the actual dynamics of the protein. This would not be very
helpful, since the SLAC data does not have any information on
the orientation of the protein. To remove this “tumbling”
information from our dataset, we first attempted the same
approach as above (Isomap, then reconstruction via longest
path in minimum spanning tree) but by using phi/psi angles.
These angles give information about the conformation of the
protein backbone. Further reading can be found in [4].

 We got worse results than we did from using the raw X, Y,
Z coordinates, with the RMSD error of 0.297 and frame
alignment score of 4.9 when we used n_components = 30 and
n_neighbors = 40 for hyperparameters. The reconstructed
video also was visually not as satisfactory as using the raw X,
Y, and Z coordinates of the atoms.

C. Using X, Y, Z coordinates after aligning every frame to a

reference frame

Another approach to removing the “tumbling” information
from our dataset and making it more realistic was to align
every frame to a single reference frame, so that every protein
lies in the same orientation in every frame. This was done
using the MDTraj package (same package for reading and
writing these simulation data); after the frames were shuffled,
all the frames were aligned to the very first frame in the
shuffled dataset.

 We then performed the identical procedure as the two
sections above, and got results much better than using phi/psi
angles. We got 0.142 for the RMSD error between frames and
7.8 for the frame alignment score. The resulting video was also
visually satisfactory. We see that in Table 1 that both metrics
indicate that using raw X, Y, Z coordinates performed the best,
then aligned X, Y, Z, and then the phi/psi angles. This is very
consistent with our visual results (Figure 3).

Fig. 3. Snapshots of trajectory reconstruction with aligned X, Y, Z

coordinates

TABLE I. SUMMARY OF SCORES FOR THE THREE AK PEPTIDE

APPROACHES

 RMSD error

between frames

Frame alignment

score

Perfect

reconstruction

0.102 1000

Raw X, Y, Z 0.13 11.1

Phi/Psi angles 0.297 4.9

Aligned X, Y, Z 0.142 7.8

D. Hyperparameter Screening with 100 and 500 frames

After we acquired our results for the three approaches, we
attempted to sweep a large number of ranges for the
hyperparameters for the Isomap algorithm: n_components and
n_neighbors. We were only able to sweep values for frame
counts of 100 and 500 due to computational constraints. The
performance at each value of n_components and n_neighbors
was measured both with the RMSD error between frames and
the frame alignment score. Some of the results are shown
below. In general it was difficult to draw conclusions exactly
what set of hyperparameters yielded the best results, but it
seemed that for 500 frames, the best result with RMSD error
between frames came from using n_components = 28 and
n_neighbors = 23. With n_neighbors fixed at 23, we generated
the following graph (Figure 2). With n_components fixed at 28,
we generated another graph (Figure 3).

 When using frame alignment score, for 500 frames, the best
result came from using n_components = 11 and n_neighbors =
22. Similar graphs as with the RMSD error score follows.

Fig 4. n_neighbors fixed, varying n_components, RMSD error metric

Fig 5. n_components fixed, varying n_neighbors, RMSD error metric

Fig 6. n_neighbors fixed, varying n_components, frame alignment metric

Fig 7. n_components fixed, varying n_neighbors, frame alignment metric

VI. CONCLUSION AND FUTURE WORKS

Nonlinear dimensionality reduction via Isomap then
reconstruction via a graph algorithm seems like a promising
approach to reconstructing the protein dynamics trajectory.
Specifically, using X, Y, Z coordinates from aligned frames
seem to perform much better than using phi/psi angle
information - this could be due to the fact that phi/psi angles
only give information on the conformation of the protein
backbone, whereas X, Y, Z coordinates give information about
the every single atom present in the frame.

More improvements can be made both on the
dimensionality reduction and on the trajectory reconstruction,
by considering different algorithms (e.g., rearranging the
minimum spanning tree, t-NSE instead of Isomap). In addition,
improvement can be made on the evaluation metric to more
accurately measure the quality of reconstruction for optimal
hyperparameter optimization.

Another feature that may be useful aside from X, Y, Z is
the total energy of the frame. Biological molecules have a
thermodynamic tendency to move to lower energy states, so
this may be relevant information in reconstructing the protein
trajectory.

NOTES

The code that reconstructs the molecular dynamics
simulation data produces a .dcd trajectory file. The file can be
opened in VMD along with the corresponding PDB file to view.

ACKNOWLEDGMENT

We would like to thank Dr. TJ Lane for providing us with
the molecular dynamics simulation data as well as mentorship.
We would also like to thank Professor Gordon Wetzstein for
teach EE368 and providing a project opportunity.

REFERENCES

[1] Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global
geometric framework for nonlinear dimensionality reduction. science,
290(5500), 2319-2323.

[2] Needleman, S. B., & Wunsch, C. D. (1970). A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. Journal of molecular biology, 48(3), 443-453.

[3] Smith, T. F., & Waterman, M. S. (1981). Identification of common
molecular subsequences. Journal of molecular biology, 147(1), 195-197.

[4] Kleywegt, Gerard J., and T. Alwyn Jones. "Phi/psi-chology:
Ramachandran revisited." Structure 4.12 (1996): 1395-1400.

APPENDIX

Both Christian Choe and Min Cheol Kim worked on

experimenting with and designing the algorithm we used to

reconstruct the frame order. Christian then focused on

building the cube simulations to ensure that our algorithm is

robust, and Min Cheol focused more on applying the

algorithm on the biological dataset.

