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Abstract

The relationship between visual information and neural activity is central to the field of computational
neuroscience and has the potential to advance the development of brain-machine interfaces. In this paper,
we explore methods used to map neural activity, in the form of fMRI signals, to visual stimuli, in the
form of black and white 100 pixel images. First, we replicate the current leading technique, which trains
many logistic classifiers that map the fMRI data to blocks of pixels in the stimulus image space. Next, we
implement novel methods, including a linear classifier, several support vector machines (SVM), and several
neural network architectures and compare our results with the current leading technique. We find that while
linear classifiers and SVMs are not very effective at modeling the relationship between fMRI activity and
visual stimuli, the neural network performs better, although not as well as the leading technique.

1 Introduction

Problem Description and Motivation

The question of how sensory information is encoded in neural signals is central to the field of computational
neuroscience. In particular, the mapping between stimulation of the retina and activity in the visual cortex
is not well understood, though the literature tells us that the relationship is most likely highly nonlinear and
suffers from a substantial amount of noise. This makes machine learning and computer vision techniques
particularly well suited to discovering a method to decode visual stimuli from their fMRI patterns.

In 2008, a group of researchers (Miyawaki, et. al.) from the Japanese company ATR (Advanced Telecom-
munications Research Institute International) published a paper in Neuron that presented their generally
successful attempt to apply local decoders trained using multinomial sparse logistic regression to uncover
this mapping. Test subjects were shown a series of 10-by-10 pixel images, where each pixel could be either
black or white. Scans of their visual cortex were conducted as the subjects watched these images, and after
training the reconstruction algorithm on this set, the researchers used the trained algorithm on real-time
fMRI data to reconstruct what the test subjects saw as they watched a second set of images. During the
training of the algorithm, each pixel in the 10-by-10 stimulus image was given a number between 0 and 1 to
represent the ”grayness” of that pixel predicted using the entire fMRI scan taken while the subject viewed
that image. This was repeated for each of the 100 pixels, and training was done over several images. In
fact, Miyawaki, et. al., went beyond this and used not only single pixel patches, but used 1-by-2, 2-by-1,
and 2-by-2 pixel patches as well and selected the optimal combination of these four basis patches to reduce
the reconstruction error (see original paper for details).

ATR has made their dataset as well as their code for the reconstruction algorithm publicly available,
so rather than only replicating their paper, we explored a number of alternative techniques to compare the
merits and demerits of each one against the method used by Miyawaki, et. al., and perhaps to reduce the
reconstruction error to below what was reported in their paper. Our project is an image reconstruction
problem that is cast as a classification problem (each pixel in the presented image is either black or white,
and since there are 100 pixels, there are 2% classes). We are motivated by the opportunity to understand
more deeply the encoding and decoding schemes used by the brain to represent visual data, and such



an understanding is particularly important for brain-machine interfaces to become a commercially viable
technology. We also believe this reconstruction problem is somewhat unusual compared to those presented
in class or done in previous years’ projects, so the unfamiliarity of this problem formulation is especially
exciting.

2 Previous Work

2.1 Review of Previous Work

Miyawaki, et. al.’s seminal work on visual stimuli reconstruction via fMRI trained ”local decoders” that
assigned weights associating local, small fMRI patches to pixels in the visual stimuli space. The group
used sparse logistic regression to optimize these weights on randomly generated visual stimuli and obtained
average reconstruction errors ranging approximately between 0.2 and 0.25 (measured by the pixel-by-pixel
mean square difference between the estimated image and true image). At their multiscale stage (i.e. using a
weighted combination of decoders for various patch sizes), Miyawaki, et. al. obtained a reconstruction error
of 0.2. The group was able to demonstrate the efficacy of trained local decoders that are linearly weighted
to produce a predicted output visual image. The outline of their method is as follows:

1. Data Preprocessing: After the experiment was conducted on the subject and the fMRI data was
recorded, the stimuli images were represented using four different basis pixels. The original stimuli
images were 10-by-10 pixels each, with each pixel taking on a value of 0 or 1. This is the 1-by-1 pixel
basis representation. The stimuli images were then represented by 1-by-2 pixel blocks, where each
block was assigned the average value of its component pixels (i.e., if the block consisted of two white
pixels or two black pixels, the entire block was assigned a label of 1 or 0, respectively, if a 1-by-2 block
consisted of one white pixel and one black pixel, the entire block was assigned a label of 0.5). These
blocks overlapped to produce a total of 90 blocks of size 1-by-2 pixels. A third representation of the
stimuli images was formed by 2-by-1 pixel blocks, and finally a fourth representation was formed by
2-by-2 pixel blocks, where each block is labeled by the average intensity of its component pixels. These
four representations were used to train four types of local decoders, one type for each representation.

2. Local Decoders: Each block in each of the four representations of the stimuli images had an associ-
ated local decoder. That is, the 1-by-1 pixel block representation had 100 local decoders, the 1-by-2
representation had 90 local decoders, the 2-by-1 representation had 90 local decoders, and the 2-by-2
representation had 81 local decoders, yielding a total of 361 local decoders that were independently
trained. Each local decoder was trained to predict the intensity value of its associated block in a
stimulus image using all voxels in the associated fMRI scan. For the 1-by-1 representation, each block
(each pixel) was assigned a label of either 0 or 1, so the problem reduced to binary classification, but
for the 1-by-2 and 2-by-1 representations each block could take a value of 0, 0.5, or 1, and for the 2-by-2
representation values of 0, 0.25, 0.5, 0.75, and 1 were possible, so for these latter three representations
the problem was multiclass classification. For this reason Miyawaki, et. al., used multinomial logistic
regression to assign weights to voxels for each local decoder. Rather than using maximum likelihood
to find these weights, they used sparse logistic regression to force only a small number of voxels to
have nonzero weights. This was done to maintain biological realism, since experiments have shown
that localized visual stimuli (e.g., an image with only one white pixel) result in sparse neural activity
as seen in fMRI scans.

3. Combination Coefficients: Because the representations for the 1-by-2, 2-by-1, and 2-by-2 pixel blocks
overlap, the outputs of the local decoders must be multiplied by coefficients and then summed to
produce the value of each pixel in the reconstructed stimulus image. For instance, the first pixel (top
left of the image) has four local decoders associated with it, one for each representation. Each of
these four local decoders outputs a single number that represents the prediction for the intensity value
of the first pixel. Each of these four numbers is multiplied by a different coefficient and summed to
produce the final prediction for the value of the first pixel. Least-squares was used across all training
observations of the first pixel to calculate the optimal coefficients. The pixel in the second row and
second column of the image has 9 associated local decoders (due to overlap, this pixel lies within 9



blocks across the four representations), and similarly least-squares is performed to calculate the optimal
values for these 9 coefficients. Once the optimal coefficients are calculated for each pixel in the stimulus
image, the algorithm is complete.

Similar work has since focused on reconstructing motion from fMRI scans. Nishimoto, et. al. utilized a
motion-energy model that predicted a change in visual stimuli (i.e. a frame-by-frame difference) using fMRI
voxels recorded from a subject viewing short video clips. Using this time-sensitive local decoder, Nishimoto,
et. al. achieved approximately 0.3 reconstruction accuracy for moving frames.

2.2 Novelties in Our Work

After replicating the results from Miyawaki, et. al., we attempt to achieve similar or higher reconstruction
accuracies using an array of machine learning techniques. We simplify the model used, and frame the
fMRI to predicted stimuli problem as a basic machine learning algorithm where output and input pixels are
independent. The novel techniques we apply include a linear classifier, SVM, and Neural Network. These
techniques require significantly less computational time (on the order of minutes to hours) compared to the
time required for techniques used in Miyawaki, et. al. (on the order of days) on a single machine. This
significant decrease in computational time makes real-time fMRI to stimulus image reconstruction more
feasible.

3 Technical Details

3.1 Summary

First we perform principal components analysis (PCA) to reduce the dimension of the input space from 6046
to 50. Using the training set, we trained a neural network for each pixel that takes the 50-dimensional voxel
data as input and outputs either 0 or 1 to denote the intensity of the pixel. We train a separate neural
network for each pixel, yielding a total of 100 neural networks. As described in section 2.1, Miyawaki, et.
al., represented the visual stimulus images using 1-by-1 (original), 1-by-2, 2-by-1, and 2-by-2 pixel blocks,
yielding a total of 361 blocks for each image. For each pixel block in the 1-by-2 case, we then train a neural
network that takes the 50-dimensional voxel data as input and outputs a predicted value for that pixel block,
and we repeat this for the 2-by-1 and 2-by-2 cases. This yields 361 neural networks. When reconstructing
the image for a test example, we perform PCA on the test voxel data to obtain a 50-dimensional input. For
each pixel, we feed this input into all neural networks that are associated with a pixel block that contains
our pixel of interest. We then multiply each of the outputs of the neural networks by a coefficient (which was
calculated using least-squares over the training set), and then sum these terms to produce our final predicted
output for our pixel of interest. Performing this for all pixels yields a complete reconstructed image for our
particular test input example.

3.2 Detailed Description
Dataset

The data is obtained from the website brainliner.jp, where ATR has posted publicly available fMRI data. A
test subject was presented a series of 10-by-10 pixel images, where each pixel is either black or white. As
the subject viewed these simple visual stimuli, fMRI scans of his visual cortex were conducted (6046 voxels).
For the training of the reconstruction algorithm, during each of 20 runs the subject was shown 22 randomly
generated images, and 3 scans were taken for each image. The resultant algorithm was used to decode in
real time what the subject saw as he viewed 10 images of geometric shapes or letters per run for 12 runs. 6
scans were taken for each of these 120 images (the fMRI data was block-averaged in the original paper by
Miyawaki, et. al.).



Presented image

Reconstructed image

Figure 1: Experimental schematic from Miyawaki, et. al. 10-by-10 pixel images are presented to a partici-
pant, from which fMRI readings are obtained. fMRI readings are segmented into patches which are used to
reconstruct the original presented image.

Techniques Explored

1. Linear Classifier: As a baseline technique we trained a linear classifier with fMRI scans and presented
images represented as column vectors. The input and output variables are the column vector of an
fMRI image and the column vector of the presented image, respectively. We implemented a simple
least-norm solution in closed form.

2. Support Vector Machine: We replaced the least-norm solution with an SVM classifier for each pixel (a
total of 100 SVMs). Each SVM uses the fMRI data for the associated image to predict whether a pixel
will have a value of 0 or 1. We trained SVMs with a variety of kernels and regularization parameters
to see which provides the best performance.

3. Neural Networks: We trained several neural network architectures with the details explained below.

Note: We used libraries to implement techniques such as SVM and neural network training, since pre-
existing libraries like those of MATLAB are optimized to compute these algorithms very quickly (and our
dataset is quite large). Data preprocessing, implementation of simple algorithms like least-norm, training
and cross-validation, the specific architecture of our neural network, and data postprocessing was our own
novel code, while we relegated the actual calculation of the SVM decision boundary (for instance) to libraries.

Evaluation Metrics

Our techniques were assessed using the mean-squared error (MSE) between predicted images and images
that were actually shown. We define MSE as:

1 .
MSE = mZHi—iH
i€l

Where I is the set of 10-by-10 stimulus images in our test set and ¢ is our estimate of image i. We also
considered using other evaluation metrics as well, such as the structural similarity index (SSIM).

Our training set was the same 20 runs used by Miyawaki, et. al., for their training set, and likewise our
test set was their test set of 12 runs of images of geometric shapes and letters. By emulating the training
conditions of the original paper, we were able to directly compare our results to those reported by Miyawaki,
et. al.



4 Experiments

1. Replication of Previous Results

(a) Setup: We trained local decoders as described in Miyawaki, et. al. for patch sizes of 1 x 1, 1 x 2,

2 x 1, and 2 x 2. Each local decoder maps concatenated pixel patches in the fMRI space to a
single pixel in the stimulus image, and is computed with logistic regression. To predict a pixel in
the stimulus image, a weighted combination

(b) Results: See figure 2 for our replication of results described in Miyawaki, et. al. When using only

1 x 1 decoders, we received an MSE of 0.1200. When using a weighted combination of 1 x 1 and
1 x 2 decoders, we received an MSE of 0.1003.
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Figure 2: Visualization of original stimulus image (top row) vs. reconstructed image using only 1x 1 decoders
(middle row) and using both 1 x 1 and 1 x 2 decoders (bottom row).

2. Results of Linear Classifier

(a)

Setup: Let Y be our 1320-by-100 matrix containing the training set of images, and let A be our
1320-by-6046 matrix containing the associated fMRI training set data. Assuming that Y = AX,
we are trying to find a 6046-by-100 matrix X that represents the least-norm linear transformation
from A to Y. If we let B be our 720-by-6046 matrix containing the fMRI data for the test set, then
7 = BX will give us our estimates for our test images. However, we will force every element in 7
that is greater than 0.5 to be 1, and all other elements will be 0. We can then directly compare our
estimated test images to the actual test images, casting the algorithm as a classification problem
where each pixel can fall into one of two classes: black (0) or white (1). Note that because
each pixel can only be either 0 or 1, the MSE between an estimated image and an actual image
is actually identical to the classification error averaged over all pixels, which is why we report
the MSE and not the RMSE below. The reported MSE was averaged over all images (i.e., the
classification error averaged over all pixels and averaged over all images).

Results:
Method Training MSE | Test MSE
Least-norm | 0 0.4928

Comments: Although the least-norm solution is naive, it provides a baseline for further experi-
ments. The average classification error is just under 0.5, so it performs about as well as random
chance (0.5). Clearly the least-norm solution fails to explain the transformation between A and
Y well.

3. Results of SVMs

(a)

Details: We trained an SVM for each pixel (a total of 100 SVMs) to predict whether that pixel
will have a 0 or a 1 as its value. For the linear SVM, we used a range of regularization parameters



A ranging between 0.01 and 100 and selected the value that minimized error. We used a vari-
ety of kernels: linear, quadratic, third-order polynomial, radial basis function, and a multilayer
perceptron kernel with [-1 1] scale.

Results:
Method Training MSE | Test MSE
Linear SVM 0 0.4305
Quadratic SVM | 0.1906 0.4931
Polynomial SVM | 0.4927 0.5273
RBF SVM 0 0.5120
MLP SVM 0.5002 0.2750

Comments: The MLP kernel by far offered the best performance on the test set, although it
performed much less well on the training set, which is concerning. The second best test set
performance was seen by the linear kernel, although it seemed to overfit the training data due
to its high test error compared to training error. However, if the images produced by the MLP
SVM are viewed, it is seen that the predicted intensity are almost always zero for each pixel. A
trivial algorithm that always predicts zero for every pixel would achieve an MSE similar to that
reported above for the MLP SVM test MSE. Regularization was performed as well, but the MSE
values did not change significantly from those reported above. Thus, at least from what we can
gather from our experiments, the SVM produces a trivial solution. However, our experiments
below show that neural networks attempt to model the complex nonlinear relationship between
fMRI data and stimulus images with greater success.

4. Results of Neural Networks

(a)

Probability-outputting Neural Networks: Our initial approach with the neural networks was to
predict one pixel at a time using the fMRI data. We implemented a neural network with various
architectures, all ultimately predicting the value of one pixel based off 50 or 100 largest principal
components of the training data. The general neural net architecture is summarized in figure 3.
Some of the architectures we used were [10], [10 10], [15 15], where each number represents the
number of hidden nodes in each hidden layer. We predicted each pixel using 20 neural nets and
averaged their outputs; this made the process much slower but improved the consistency of our
results. After the nets were trained and the test data was evaluated to yield a score for predicting
0 (¢o) and a score for predicting 1 (¢7), the actual pixel value p was calculated using the following
formula, which represents the probability of the pixel having an intensity value of 1:

_ _
p= Po+o1

Some of our best performing and most consistent results are shown in figure 4.

Optimally Combined Four-Basis Neural Networks: We then represented the stimulus images using
four different sizes of pixel blocks (1-by-1, 1-by-2, 2-by-1, and 2-by-2 pixels), just as was done in
the Miyawaki, et. al., paper. This yielded a total of 361 features for each stimulus image, up from
the original 100 pixels for each stimulus image. We trained 361 neural networks to predict each
one of these features. Rather than predicting probabilities as in the previous technique, in this
technique each neural networks predicted the intensity of the pixel from a set of class values (0 or
1 for the 1-by-1 pixel block case, 0, 0.5 or 1 for the 1-by-2 and 2-by-1 case, and 0, 0.25, 0.5, 0.75,
and 1 for the 2-by-2 case). We then used least squares on the neural networks associated with
each pixel to find the optimal combination of the outputs of those neural networks. For instance,
for the top left pixel (the first pixel), the associated blocks consist of one 1-by-1 block, one 1-by-2
block, one 2-by-1 block, and one 2-by-2 block. For a pixel in the middle of the image, there are 9
associated blocks (because blocks overlap). These class predictions were then optimally combined
with coefficients that were determined using least-squares on the training data. To reconstruct
images from test set fMRI data, the data underwent PCA to reduce the dimensionality to 50
and then fed into each of the 361 neural networks. For each pixel, the associated neural network
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Figure 3: Architecture of a single probability-outputting neural network.

outputs were combined using the previously calculated optimal coefficients to produce a single
intensity value for each pixel. A few representative images are shown in figure 5.

(¢) Fitting Networks: Our last technique involved using function fitting neural networks to learn
a relationship between the 50-dimensional PCA-processed fMRI data (the input) and the 100-
dimensional visual images (the output). Instead of training a separate network for each pixel, our
networks outputted 100-dimensional vectors (thereby allowing the network to consider relation-
ships among all pixels). We trained four neural networks, one for each size of pixel block. We
then used least-squares to find the optimal combination coefficients, which we used to reconstruct
images using the test set input data. Each network had one hidden layer, and we experimented
with 5, 10, 15, and 25 hidden neurons in the hidden layer. Sample reconstructed images are shown

in figure 6.
Results:
Number of Hidden Neurons | Training MSE | Test MSE

5 0.2406 0.2753
10 0.2386 0.2841
15 0.2375 0.2949
20 0.2353 0.2851
25 0.2330 0.3040

5 Conclusions

Although our neural networks greatly outperformed our SVMs, both techniques shed light on the nature of
the data, especially when the logistic regression model of the original Miyawaki, et. al., paper is considered.
We summarize our key conclusions from our research as follows:

1. A weighted linear model does not effectively describe the relationship between the fMRI images and
stimulus images. The results from various linear models, including the linear classifier and support
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Figure 4: Original and predicted images produced by the probability-outputting neural networks during the
testing session.
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Figure 5: Original and predicted images produced by the optimally combined four-basis neural networks
during the testing session.

vector machine with linear kernel yielded high MSE (between 0.43 and 0.50) that are marginally better
than guessing the output pixel. However, these results served as baselines to which comparison with
other methods that utilize spatial information can be made.

2. The use of PCA significantly improved results by reducing noise in the input fMRI data. Although
PCA was necessary because training neural networks on the full 6064-dimensional input data was
prohibitively slow, the first 50 principal components captured 93% of the variance in the data, which
justifies the use of PCA. Shorter neural network training times allowed us to optimize the networks
over various hyperparameters.

3. A large number of neurons in the hidden layer of each neural network seemed to be optimal. This
indicates that the input-output relationship of the data is highly nonlinear, which is apparent from the
poor performance of linear methods and of the SVMs. In the original paper multiclass sparse logistic
regression is used to create decision boundaries in the input space, but further optimization of our
neural networks could lead to reconstruction errors even smaller than those produced by Miyawaki,
et. al. Although it is difficult to optimize neural networks in a systematic way, their high degree of
flexibility makes them particular suited to this research problem.
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Figure 6: Original and predicted images produced by the function fitting neural networks during the testing
session.

4. Miyawaki, et. al., noted that the use of four different pixel block sizes (1-by-1, 1-by-2, 2-by-1, and 2-by-2
pixel blocks), along with their least-squares optimal combination, substantially improved reconstruction
performance. The use of blocks larger than 1-by-1 allowed their algorithm to consider correlations
between neighboring pixels.

5. Future Work: The techniques used by Miyawaki, et. al., as well as our own techniques viewed the data
as vectors rather than as matrices. That is, each three-dimensional fMRI scan was concatenated into
a 6046-element vector, and similarly the stimulus images were concatenated into a 100-element vector.
Although positional image is still maintain in this format, information specific to image data is lost.
For instance, a more sophisticated algorithm could use the histogram of gradients (HoG) technique to
extract useful information from the fMRI voxel data, which would then be used in a neural network or in
logistic regression. Furthermore, we could have simplified the fMRI data using Eigenfaces (SVD-based)
or Fisherfaces (LDA-based) to reduce the dimensionality of the input space in a visually meaningful
manner. Another possible direction would be to use minimum mean square error (MMSE) estimation
to compute the optimal combination coefficients for the four sizes of pixel blocks. Whereas least-squares
makes no assumptions about the underlying distribution of the data, MMSE makes use of the (sample)
variance of the data to provide an estimate more precise than that provided by least-squares. This
approach would be justified if the fMRI data is approximately normally distributed. If some voxels are
noisier than others, MMSE would alter the least-squares estimate to account for this. Finally, for the
optimally combined four-basis neural network, we could have calculated the probability of the intensity
being 1 for each pixel block (each feature) from each of the 361 neural networks, instead of simply
assigning a class label to each pixel block.
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